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High frequency audible calls in northern 
birch mice Sicista betulina in response 
to handling: effects of individuality, sex 
and body mass on the acoustics
Ilya A. Volodin1,2* , Anna V. Klenova1, Olga G. Ilchenko2 and Elena V. Volodina2

Abstract 

Objectives: This is the first study of the sonic and ultrasonic vocalization in a Dipodidae rodent. For the small-sized 
quadrupedal northern birch mouse Sicista betulina, phylogenetically related to the bipedal jerboas (Dipodidae), we 
report null results for ultrasonic vocalization and investigate the acoustic cues to individual identity, sex and body size 
in the discomfort-related high-frequency tonal sonic calls.

Results: We used a parallel audio recording in the sonic and ultrasonic ranges during weighting adult northern birch 
mice before the scheduled hibernation in captivity. The sonic (audible) high-frequency tonal calls (ranging from 6.21 
to 9.86 kHz) were presented in all individuals (7 males and 4 females). The ultrasonic calls lacked in the recordings. 
Two-way nested ANOVA revealed the effects of caller individual identity on all 10 measured acoustic variables and the 
effects of sex on four out of 10 measured acoustic variables. Discriminant function analyses with 10 acoustic variables 
included in the analysis showed 85.5% correct assignment of calls to individual and 79.7% correct assignment of calls 
to sex; both values significantly exceeded the random values (23.1% and 54.3%, respectively) calculated with rand-
omization procedure. Body mass did not differ between sexes and did not correlate significantly with the acoustic 
variables.
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Introduction
Adult rodents may vocalize during handling in the lab 
[1–5]. These calls probably have no special function, 
being triggered by the elevated emotional arousal and 
discomfort of a caller [3, 4, 6–9]. Nevertheless, these 
calls may provide information about the caller, pre-
sented in the mammalian calls by default. Mammalian 
calls are offprints of individual vocal apparatus of a caller 
[10] and therefore by default provide information about 
caller’s individual identity at level higher than by chance 
[11–17]. Call variables may provide general information 

about body size [18, 19] and particular information about 
body mass [20] and body condition [21–24]. In addi-
tion, acoustic traits may reflect sexual dimorphism [14, 
25–28].

Small mammals with their respectively small sound-
producing structures commonly produce high-frequency 
sonic calls [29–31] along with ultrasonic calls above 
20 kHz [32, 33]. Birch mice (genus Sicista, family Smithi-
dae) are quadrupedal rodents, related to the bipedal jer-
boas Dipodidae and comprising together superfamily 
Dipodoidea. The northern birch mouse Sicista betulina, 
which status as a separate species was recently confirmed 
based on cytochrome b gene polymorphism [34], inhabit 
temperate forests and taiga from Western Europe to the 
Baikal region. This is a small mammal, with female body 
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mass 9.4 ± 0.22  g and male body mass 8.98 ± 0.06 [35], 
maximum 10.4 g [36].

Northern birch mice are nocturnal but have bursts of 
activity during the day in spring and autumn [37] and 
hibernate for more than 7 months of the year [38]. There 
are no sustainable laboratory colonies of this species, 
as these animals poorly live in captivity, only for some 
months [37, 38]. At Moscow Zoo (Moscow, Russia), a 
temporal captive colony of northern birch mice emerged 
in 2018 from animals saved by volunteers during mass 
migration at peak of population growth, when many indi-
viduals were perishing in river water.

Calls of any Dipodoidea species have never been pre-
viously investigated. Zootechnical routine before the 
scheduled seasonal hibernation of small mammals at 
Moscow Zoo includes obligatory visual inspection and 
weighing of all individuals to estimate their body condi-
tion. Preliminary observations of the authors indicated 
that birch mice vocalize in human audible frequency 
range during this procedure. We expected that at han-
dling, these small-sized rodents would vocalize in both 
the sonic and ultrasonic ranges, as e.g. laboratory rats [2] 
or some species of gerbils [4, 5]. In this study, we apply 
audio recording in both sonic and ultrasonic ranges of 
frequencies to record the discomfort-related calls of the 
captive northern birch mice. We describe the acoustic 
structure and estimate the effects of individuality, sex and 
body mass on the acoustic variables of these calls.

Main text
Methods
Calls of 11 adult northern bitch mice (7 males, 4 females) 
were recorded from 12 to 17 September 2018 from mem-
bers of a newly established captive colony of this spe-
cies at Moscow Zoo (Moscow, Russia). All subjects were 
wild-captured in August 2018 on the eastern shore of the 
Yenisei River (Siberia, Russia) near the village Mirnoye 
(62°18′N 89°01′E).

The animals were kept under a natural light regime at 
temperature around 20  °C, singly in wire-and-plastic 
cages of 40 × 30 × 30 cm, with a bedding of mulch, soil, 
sand and enrichment of various shelters. They received 
custom-made small rodent chow with insect and mineral 
supplements and water ad libitum.

Calls of each animal were recorded during handling in 
daytime at temperature about 20  °C. Parallel 1–2-min 
recording in the sonic (20  Hz–20  kHz) and ultrasonic 
(over 20  kHz) ranges of frequencies was conducted 
during the 1–2-min inspection-and-weighing proce-
dure for preparing the animal to the scheduled hiber-
nation. During the procedure, the animal was taken 
out of the home cage with a keeper hand, inspected 

visually, weighed on the electronic scales G&G TS-100 
(G&G GmbH, Neuss, Germany) with 0.01  g precision 
and returned back to the cage. During recording, a 
researcher could always clearly see that calls were emit-
ted by a focal animal. Animal disturbance was kept at 
minimum; no special actions provoking vocalization 
was applied.

For the sonic recording (sampling rate 48  kHz, 16 bit 
resolution) we used a Marantz PMD-660 solid state 
recorder (D&M Professional, Kanagawa, Japan) with Sen-
nheiser K6-ME64 microphone (Sennheiser electronic, 
Wedemark, Germany), hand-held at distance 0.5–1  m 
from the animal. For the ultrasonic recordings (254 kHz, 
16 bit resolution), we used an Echo Meter Touch 2Pro 
(Wildlife Acoustics Inc., Maynard, MA, USA) run at 
Android smartphone OnePlus 3 (OnePlus Company, 
BBK Electronics LTD, Shenzhen, Guangdong, China), 
hand-held at distance 0.5–1 m from the animal.

Each recording trial provided two simultaneously 
recorded wav-files of the same length per individual, 
one sonic and one ultrasonic. In total, 17 recording tri-
als (one trial per individual for five subjects and two trials 
per individual separated with time spans of 2–5 days for 
six subjects), provided in total 34 (17 sonic and 17 ultra-
sonic) wav-files for spectrographic analysis. For subjects 
with two trials per individual, weighting data were aver-
aged for analyses.

Visual inspection of spectrograms of the wav-files 
using Avisoft SASLab Pro software (Avisoft Bioacous-
tics, Berlin, Germany) showed null results for presence of 
the ultrasonic calls, whereas all the sonic wav-files con-
tained the same type of tonal high-frequency sonic calls. 
For acoustic analyses, we selected up to 20 (14–20) calls 
with good noise-to-call ratio per individual, 207 calls in 
total (Additional file  1: Table  S1). If two recordings per 
animal were available, we selected calls in a balanced 
manner from both recordings. In each call, we measured 
10 acoustic variables (Fig. 1). We measured, in the spec-
trogram window of Avisoft (sampling frequency 48 kHz, 
Hamming window, FFT 1024 points, frame 50%, over-
lap 96.87%, providing frequency resolution 47  Hz and 
time resolution 0.67 ms), call duration with the standard 
marker cursor, and the maximum fundamental frequency 
 (f0max), the minimum fundamental frequency  (f0min), the 
start fundamental frequency  (f0beg) and the end funda-
mental frequency  (f0end) with the reticule cursor. In each 
call, we also measured, in the power spectrum window 
of Avisoft, the frequency of maximum amplitude  (fpeak), 
the three quartiles  (q25,  q50 and  q75) covering, respec-
tively 25%, 50% and 75% of call energy from the call’s 
mean power spectrum, and the bandwidth of the  fpeak 
at the distance of 10 dB from the maximum (Fig. 1). All 
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measurements were exported to Microsoft Excel (Micro-
soft Corp., Redmond, WA, USA).

Statistical analyses were made with STATISTICA, v. 
8.0 (StatSoft, Tulsa, OK, USA); all means are given as 
mean ± SD, and differences were considered significant 
whenever p < 0.05. Only three of the 110 distributions 
departed from normality (Kolmogorov–Smirnov test, 

p > 0.05). We used two-way nested ANOVA with individ-
ual nested within sex, sex as fixed factor and individual as 
random factor, to estimate the effects of individuality and 
sex on the acoustic variables. We used one-way ANOVA 
to compare body mass between sexes. We used Pear-
son correlation with logarithm of body mass as proxy of 
body size to estimate effects of body size on the acoustic 
variables. We used discriminant function analysis (DFA) 
standard procedure to estimate potential for encoding 
individuality and sex by the high-frequency sonic calls 
of the northern birch mice. We used all 10 acoustic vari-
ables because they weakly correlated to each other on 
the basis of cross-correlation analysis, thus meeting the 
assumptions of DFA. The relative contribution of each 
acoustic variable in the correct assignment of calls to 
individual was estimated based on Wilks’ Lambda values, 
the smaller is the value, the greater is the contribution of 
the given acoustic variable to the overall discrimination 
[39].

Random values (of correct assignment to individual or 
to sex by chance) were calculated using randomization 
procedure [40] in R (https ://www.r-proje ct.org). The ran-
dom values were averaged from DFAs performed on 1000 
randomized permutations on the data sets, as in [39, 41].

Results
We did not find the ultrasonic calls in the studied north-
ern birch mice during the handling procedures. The 
found sonic calls were rather long (from 0.24 to 0.65 s in 
different individuals) and high-frequency. Between indi-
viduals, the  f0min ranged from 6.21 to 8.69 kHz, the  f0max 

Fig. 1 Measured acoustic variables in the discomfort sonic calls 
of the northern birch mice Sicista betulina. Spectrogram (right) 
and power spectrum (left). Designations: duration—call duration; 
 f0max—the maximum fundamental frequency;  f0min—the minimum 
fundamental frequency;  f0beg—the start fundamental frequency; 
 f0end—the end fundamental frequency;  fpeak—the frequency of 
maximum amplitude;  q25,  q50,  q75—lower, medium and upper 
quartiles; bandwidth—the bandwidth of the  fpeak at the distance 
of 10 dB from the maximum. The spectrogram was created with 
Hamming window; 48 kHz sampling rate; FFT 1024 points; frame 
50%; and overlap 93.75%

Table 1 Values of measured variables and their relationships with birch mouse sex, individuality and body mass

Designations: duration—call duration;  f0max—the maximum fundamental frequency;  f0min—the minimum fundamental frequency;  f0beg—the start fundamental 
frequency;  f0end—the end fundamental frequency;  fpeak—the frequency of maximum amplitude;  q25,  q50,  q75—lower, medium and upper quartiles; bandwidth—the 
bandwidth of the  fpeak at the distance of 10 dB from the maximum; p estimates less than 0.05 are shown in underline

Variable Mean ± SD value ANOVA Pearson correlation 
with log body mass

All animal calls Male calls Female calls Sex Individual identity

Duration (s) 0.46 ± 0.17 0.42 ± 0.17 0.54 ± 0.15 F1,196 = 39.7; p < 0.001 F9,196 = 22.8; p < 0.001 r = 0.29; p = 0.42

f0max (kHz) 8.81 ± 0.61 8.83 ± 0.63 8.78 ± 0.57 F1,196 = 0.08; p = 0.78 F9,196 = 67.8; p < 0.001 r = 0.18; p = 0.62

f0min (kHz) 7.61 ± 0.75 7.79 ± 0.55 7.31 ± 0.94 F1,196 = 65.6; p < 0.001 F9,196 = 82.5; p < 0.001 r = − 0.05; p = 0.90

f0beg (kHz) 8.70 ± 0.71 8.70 ± 0.74 8.70 ± 0.65 F1,196 = 2.06; p = 0.15 F9,196 = 76.9; p < 0.001 r = 0.09; p = 0.80

f0end (kHz) 7.95 ± 0.59 7.93 ± 0.57 7.99 ± 0.63 F1,196 = 2.93; p = 0.09 F9,196 = 29.3; p < 0.001 r = 0.28; p = 0.43

fpeak (kHz) 8.05 ± 0.74 8.14 ± 0.56 7.90 ± 0.98 F1,196 = 6.23; p = 0.01 F9,196 = 53.7; p < 0.001 r = − 0.16; p = 0.65

q25 (kHz) 7.92 ± 0.67 8.02 ± 0.56 7.75 ± 0.81 F1,196 = 16.3; p < 0.001 F9,196 = 68.3; p < 0.001 r = − 0.06; p = 0.87

q50 (kHz) 8.34 ± 0.68 8.31 ± 0.50 8.38 ± 0.93 F1,196 = 2.38; p = 0.12 F9,196 = 13.2; p < 0.001 r = − 0.01; p = 0.99

q75 (kHz) 9.40 ± 1.72 8.87 ± 0.65 10.33 ± 2.47 F1,196 = 73.1; p < 0.001 F9,196 = 24.8; p < 0.001 r = − 0.11; p = 0.75

Bandwidth (kHz) 0.73 ± 0.36 0.70 ± 0.34 0.77 ± 0.39 F1,196 = 2.06; p = 0.15 F9,196 = 6.67; p < 0.001 r = − 0.15; p = 0.67

Body mass (g) 12.63 ± 2.23 12.59 ± 2.21 12.74 ± 2.76 F1,8 = 0.01; p = 0.93

https://www.r-project.org
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ranged from 8.06 to 9.86 kHz (Table 1, Fig. 2, Additional 
files 1 and 2). A common pattern of frequency modula-
tion was a steady decrease of frequency from call begin-
ning to call end. The  f0max coincided with  f0beg in 96 of 
207 (46.4%) calls, and was located in the first quarter of 
call duration in the other 91 (44.0%) calls. The  f0min coin-
cided with  f0end in 80 (38.6%) calls, and was located in the 
last quarter of call duration in the other 92 (44.4%) calls. 
The values of  fpeak were always in the range of the funda-
mental frequency band. The fundamental frequency band 
was the band with most energy in all calls without exclu-
sion. In some individuals, the fundamental frequency 
increased again at the end of a call, what in 17 (8.2%) calls 
resulted in the coincidence of the  f0end and  f0max values 
(Fig.  2). Only four calls of one individual female con-
tained nonlinear phenomena. Therefore, the high-fre-
quency tonal calls of the northern birch mice had a very 
simple acoustic structure. 

Two-way nested ANOVA revealed the effect of caller 
individual identity on all measured acoustic variables 
and the effect of sex on duration,  f0min,  fpeak,  q25 and  q75 
(Table 1). DFA showed 85.5% correct assignment of dis-
comfort calls to individual, significantly exceeding the 
random value 23.1 ± 2.4% (permutation test, p < 0.001), 
and 79.7% correct assignment to sex, significantly 
exceeding the random value 54.3 ± 2.8% (permutation 
test, p < 0.001) (Fig.  2). The three acoustic variables that 
mainly contributed to discrimination to individual (in 
order of decreasing importance) were  f0beg,  f0max and 
duration, and those that mainly contributed to discrimi-
nation to sex were  f0min,  f0end and  fpeak. Body mass did not 
differ between sexes and did not significantly correlate 
with acoustic variables (Table 1).

Discussion
This first study of vocalization in a Dipodidae rodent 
revealed that, in response to handling, adult northern 
birch mice of both sexes produced tonal calls of about 
8–9 kHz (Fig. 2, Additional file 2). For presence of ultra-
sonic calls, we obtained negative results. The lack of 
ultrasonic calls was unexpected for such small mammal 

(lighter than 10 g [35] or about 12 g in this study, Table 1). 
Nevertheless, for some other small mammals, as shrews, 
convincing negative results also indicate the absence of 
ultrasonic calls [42, 43].

In the northern birch mice, we found the lack of sexual 
dimorphism in body size, corresponding to only a weak 
sexual dimorphism in the acoustic variables. At the same 
time, their calls of very simple acoustic structure pro-
vided strong cues to acoustic individuality. Similar data 
regarding the lack of sexual dimorphism in body size, 
similar acoustics between sexes and high potential of 
high-frequency tonal calls to encode caller’s individual 
identity in spite of their very simple acoustic structure, 
were obtained for the alarm calls of speckled ground 
squirrels Spermophilus suslicus [11, 13].

The study colony of Moscow Zoo consisted of wild-
captured animals. Therefore, the collected acoustic mate-
rial is valuable as reference data on vocalization, which 
was not yet affected by domestication, for comparison 
with data of further studies from colonies of birch mice 
in zoos and laboratories. In mammals kept in captivity 
for many generations, vocalization can be thoroughly 
changed compared to the founders [44, 45].

Limitations
This pilot study had a few limitations:

• The study was conducted in one lab in one newly 
established population, on a limited number of indi-
viduals, what limits expansion of results for the entire 
species.

• Recordings were made within a short period of a 
few days and in one behavioural context (handling-
related discomfort), therefore the detected absence of 
ultrasonic calls in this species requires confirmation 
for other behavioral contexts.

• Precise age of the study animals was unknown. They 
could be young, old, or individuals of different ages, 
so the potential age-related acoustic variation could 
affect vocal variables.

(See figure on next page.)
Fig. 2 Individual and sexual identity in the discomfort sonic calls of the northern birch mice. Spectrograms of one call per individual are given for 
the 4 female (F1–F6) and 7 male (M2–M19) subject northern birch mice, n indicates the number of calls. Red bars represent the actual values of 
correct classifying of the discomfort calls to sex and to individual with DFA. Yellow bars represent the random (chance) values of correct classifying 
of the discomfort calls to sex and to individual with DFA. Comparisons between the actual and random values (indicated with brackets above the 
bars) were done using the permutation test. Bars indicate averages, whiskers indicate SD. The spectrogram was created with Hamming window; 
48 kHz sampling rate; FFT 1024 points; frame 50%; and overlap 87.5%. Original wav-files are available in Additional file 2
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Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1310 4-019-4719-9.

Additional file 1: Table S1. Data table with body mass and acoustic 
measurements of discomfort-related sonic calls of the study northern 
birch mice. Additional file 2: Audio S1. Audio wav-file with discomfort-
related sonic calls of 4 female and 7 male northern birch mice Sicista 
betulina, two calls per individual are given.
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DFA: discriminant function analysis; f0max: the maximum fundamental 
frequency; f0min: the minimum fundamental frequency; f0beg: the start funda-
mental frequency; f0end: the end fundamental frequency; fpeak: call maximum 
amplitude frequency; q25: call lower power quartile; q50: call medium power 
quartile; q75: call upper power quartile.
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