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Abstract

Ultrasonic vocalizations (USVs) of laboratory rodents indicate animal emotional arousal and

may serve as models of human disorders. We analysed spectrographically USV calls of pup

and adult fat-tailed gerbils Pachyuromys duprasi during 420-s tests, including isolation,

touch and handling. Based on combination of six different USV syllable contour shapes and

six different note compositions, we classified 782 USV syllables of 24 pups aged 5–10 days

to 18 types and 232 syllables of 7 adults to 24 types. Pups and adults shared 16 of these 26

USV types. Percentages of USV syllables with certain contour shapes differed between

pups and adults. The contour shape and note composition significantly affected most acous-

tic variables of USV syllables in either pups or adults. The 1-note USV syllables were most

common in either pups or adults. Pup USV syllables were overall longer and higher-fre-

quency than adult ones, reminiscent of the USV ontogenetic pathway of bats and distinctive

to rats and mice. We discuss that the USV syllable types of fat-tailed gerbils were generally

similar in contour shapes and note compositions with USV syllable types of mice and rats,

what means that software developed for automated classifying of mice ultrasound might be

easily adapted or re-tuned to gerbil USV calls. However, using fat-tailed gerbils as model for

biomedical research including control of USV vocalization is only possible since 6th day of

pup life, because of the delayed emergence of USV calls in ontogeny of this species.

Introduction

Ultrasonic vocalizations (USV) indicate emotional arousal and impairments in rodents [1–5].

Classifying discomfort-related ultrasonic calls is an important prerequisite for their applicabil-

ity as indicators of emotional arousal and welfare [2,6–13]. In addition, rodent USV are widely

used in biomedical experiments modeling human affective and communicative disorders

[11,14–18].

Although current biomedical research is primarily based on studying laboratory mice and

rats [1,19], other rodent species may possess by peculiar features, which would make them

especially suitable as test animals for modeling certain diseases. For example, the Mongolian

gerbilMeriones unguiculatus represents an especially convenient animal model for human epi-

lepsy [20,21] because of absence of connecting arteries between the basilar and carotid systems
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[22]. The Norvay rat Rattus norvegicusmodel is the exclusive model of vocal negative and posi-

tive emotional correlates embedded in the 22 kHz and 50-kHz USV calls [1,23], which are not

clearly distinctive in the mice model [4]. The prairie voleMicrotus ocrogaster is a particularly

useful animal model for examining social effects on the relationship between heart rate and

USV fundamental frequency because of a low and variable heart rate and the very simple

acoustic structure of the USV calls [24,25] as well as an unusually large functional and anatom-

ical representation of auditory cortex [26]. Further analyses of USV in different rodent species

(hamsters, voles, gerbils) are therefore advantageous for searching new exclusive animal mod-

els for various behavioural and medical research [27].

Rodents produce USV in various contexts [28,29]. Pup rodents produce USV during social

play [30–32], isolation from the lactating mother and littermates [12,33–40], pain [41] and

handling [34,39,42].

Adult rodents produce USV at pair bonding [43–51], novelty [52,53], territorial defense

[54], social encounters [55–57], alarm [52,58–61], spontaneously during various everyday

activities [62], echo-based orientation [63,64] and at pain [65]. During isolation procedure in

the lab, adult rodents either emit USV, as do e.g. Glaucomys flying squirrels [66], domestic

miceMus musculus [4] and Scotinomys singing mice [67], or may remain silent, as e.g. Mongo-

lian gerbils [68,69]. During handling in the lab, the USV calls were reported in adult laboratory

rats [70].

Distinctive to the audible calls, which are generated by passive flow-induced vocal fold

oscillations [71], studies on mice and rats show that the most likely mechanism for producing

rodent USV is so called “jet” or “whistle”, mechanism [72–76]. The jet mechanism generates

USV calls because of an obstruction in the path of air jet, such as sharp edge, a hole, or a side

branch [72]. The jet mechanism is probably responsible for the variability of the fundamental

frequency (f0) contours (flat, chevron, wave, upward, downward) observed in rodent USV syl-

lables [6–8,35,73,77–79]. In addition, the USV syllable contours can be either continuous

(1-note) or can be broken to 2, 3, or more notes by frequency jumps [6,7,10].

Gerbils are widely used as animal models in biomedical research [80–83]. The fat-tailed ger-

bil (Pachyuromys duprasi) represents a perspective animal model for studying USV calls [39].

This is a North African rodent species kept at laboratories and zoos [39,80,84]. Fat-tailed ger-

bils were used for studying ear morphology and hearing [85–87], tropical diseases [80,81],

thermoregulation [88,89] and physical development [84]. The fat-tailed gerbil is a medium-

sized gerbil, with body mass in adults (with breeding experience) of 60.0 ± 24.3 g and head

length of 39.6 ± 2.1 mm, without significant differences between sexes [84]. In 7-d pups, body

mass is 5.3 ± 0.7 g and head length is 18.4 ± 0.8 mm [84].

Pup and adult fat-tailed gerbils produce both audible and USV calls [39,55]. In adults, the

low-frequency wideband chirrs along to harmonic audible calls and USV calls up to 60 kHz

were registered when two unfamiliar animals (male-male, female-female or male-female) were

placed together in the one cage [55]. In pups, both audible and USV calls occur during isola-

tion and handling procedure [39]. Variables of pup “joint calls” (representing a sum of all USV

calls emitted within a test trial with cut-off inter-call intervals) reflect a degree of discomfort in

8-40-d fat-tailed gerbil pups [39].

Whereas the audible calls of fat-tailed gerbils emerge since 1st day of pup life, first USV calls

emerge only since 5th day of pup life, with maximum of ultrasound emission in 12-15-d pups

[39]. This ontogenetic delay of USV emergence is unusual. In other rodents (gerbils, mice, Cal-

ifornia mice, voles, rats, hamsters), the isolation-induced USV calls emerge since 1st-3rd day of

life, depending on the species [33,37,38,42,90–102].

The classifying of USV syllables to types and measuring their acoustic variables have not yet

been done for fat-tailed gerbils. The aim of this study was to develop a categorization of fat-
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tailed gerbil USV syllables and to compare their acoustics between pups and adults. As soon as

USV calls of fat-tailed gerbils are missing until 5th day of pup life [39], we selected for the com-

parative analyses of pup and adult USV calls only those acoustic recordings collected from 5-

9-d pups.

Material and methods

Ethics statement

This study was part of the research program of the Scientific Research Department of Moscow

Zoo. All the four authors are zoo staff members, so no special permission was required for

them to work with animals in Moscow Zoo. All study animals belonged to the laboratory col-

lection of Moscow Zoo. The experimental procedure has been approved by the Committee of

Bio-ethics of Lomonosov Moscow State University, research protocol # 2011–36. We adhered

to the ‘Guidelines for the treatment of animals in behavioural research and teaching’ (Anim.

Behav., 2006, 71, 245–253) and to the laws on animal welfare for scientific research of the Rus-

sian Federation, where the study was conducted. No one single animal suffered due to data

collection.

Study site and subjects

The USV calls were collected from members of a captive colony of fat-tailed gerbils at Moscow

Zoo, Moscow, Russia, in May-July 2013 and in June-August 2014. Our study animals were 40

6-10-d pups (17 males and 23 females from 11 litters) and 20 adults with breeding experience

(10 males, 10 females). Study pups were sexed between 12 and 19 days of age, on average at

15.1 ± 2.0 days of age based on the appearance of nipples in females [84,103]. The small size of

pups also prevented individual chip marking for ethical reasons until 18–20 days of age.

Before parturition, females were checked once a day for the appearance of a litter, and birth

dates as well as the number of pups were recorded. The 11 study litters, containing in total 40

study pups, originated from 10 different mothers: nine mothers with one litter per female and

one female gave birth to two litters. The litter size varied from 2 to 6 pups

(mean ± SD = 4.00 ± 1.34). The day of birth was considered zero day of pup life.

Animal housing

The animals were kept under a natural light regime at room temperature (24–26˚C), in family

groups consisting of two parents and littermates, because a male is non-aggressive to pups and

the appearance of a second litter is possible without separation of the first one [39,84]. The ani-

mals were housed in wire-and-glass cages of 51x42.5x41.5 cm, with a bedding of sawdust and

hay, various shelters, cardboard boxes and tree branches as enrichment. They received cus-

tom-made small desert rodent chow with insect and mineral supplements and fruits and vege-

tables ad libitum as a source of water. All study animals were descendants of 8 animals (5

males and 3 females), obtained by Moscow Zoo in December 2007 from a natural population

in Egypt.

Experimental procedure and USV recording

All acoustic recordings were conducted in a separate room where no other animals were pres-

ent, at room temperature 23–28˚C (mean ± SD = 25.1 ± 2.4) during daytime, at the same level

of background noise. For USV recordings (sampling rate 384 kHz, 16 bit resolution) we used a

Pettersson D1000X recorder with built-in microphone (Pettersson Electronik AB, Uppsala,

Sweden). The microphone was established stationary at distance 15 cm above the tested
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animal. The obtained recordings had a high signal/noise ratio, the reverberation practically

lacked.

Both pups and adults were tested singly. In total, each individual pup participated in 3

experimental trials (one trial per pup per age), at ages of 4–5, 6–7, and 8–9 days after birth; for

details see [39]. Each individual adult participated in one trial per animal. Immediately before

an experimental trial, the focal pup was taken from the nest and transferred in a small clean

plastic hutch to the experimental room within the same floor of the building. Time from

removal of the focal pup from the nest to the start of an experimental trial did not exceed 60 s.

The experimental trial started, when the focal animal was placed to the experimental setup.

Duration of each experimental trial was 420 s (7 min). Each trial took place in three stages: the

isolation stage (120 s) followed by the touch stage (105 s), handling stage (105 s) and measure-

ment stage (120 s). The duration of tests in this study was within range typical for those used

in medical tests with rodent pups, 2–15 min [104].

For the duration of the isolation stage, a focal animal was located either in a clean plastic

hutch (190x130x70 mm for pups) or in a plastic cylinder without bottom (diameter 193 mm,

high 170 mm for adults), standing on even plastic table surface. Both the plastic huge and cyl-

inder were open from above, i.e. from the side where the microphone was placed. For the

duration of the touch stage, the experimenter (ASZ) gently touched the focal animal with a cot-

ton bug, approximately two times per second. For the duration of the handling stage, the

experimenter took the focal animal in hands and rotated it following [105] on its back. For the

duration of the measurement stage, the experimenter thrice measured body length, head

length, foot length the tail length with an electronic caliper, continuing keeping it in hands; the

measurements were used in the study [84]. The end of measurements was the end of the trial.

Although the experimenter hand surface temperature (28–30˚C, [106]) was slightly higher

than the temperature in the experimental room, a pup was held by fingers, so a possibility of

additional warming the pup from the hand lacked. In contrast to pups, the adults were hand-

held during the handling and measurement stages.

After the end of a trial, the focal pup was placed to a heating hutch with a bedding of a cot-

ton fabric, standing in the neighboring room. Experimental trials with all littermates were

done consequently in the same manner. Then all the litter in total was returned to their home

cage to their parents; the time of pup stay out of the nest did not exceed 40 min. Although

pups were not individually identified, the sequential trials with littermates allowed controlling

that each pup participated in experiments only once per age. The adults were taken from their

home cages before experiments with a clean plastic glass and returned to the cage after the test

trial. The experimental setup was rubbed with napkin wetted with alcohol after each experi-

mental trial, to avoid effect of smell on USV of the next focal animal in the next experimental

trial [68,107]. Each trial was recorded as a wav-file.

Call samples

Visual inspection of spectrograms of acoustic files using Avisoft SASLab Pro software (Avisoft

Bioacoustics, Berlin, Germany) showed that USV calls lacked in the study sample of fat-tailed

gerbil pups until the 5th day of life [39]. Therefore, we selected for analysis only the acoustic

files recorded from 5th to 9th day of pup life. For some pups at some ages, recording trials were

missing by refusals of equipment or for other reasons. As a result, 110 trials of the potential

120 (40 pups at 3 ages) recording trials were included in analysis. For the 20 study adults, we

included in the visual inspection all available 20 files corresponding to the trials, one file per

adult individual.

Ultrasonic vocalization of pup and adult gerbils
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Visual inspection of spectrograms of pup acoustic files revealed that only 37 of the 110

audio files contained USV calls (4 of the 38 files for the 5-d pups, 11 of the 37 files for the 7-d

pups and 22 of the 35 files for the 9-d pups). In total, USV calls were available for 24 of the 40

study pups, from 10 of the 11 litters; 13 of the 37 audio files were from repeated recording trials

of the same pups at different ages. For the 11th litter, pup USV calls were only available since

10th day of pup life, therefore we did not include it in the analysis.

Visual inspection of spectrograms of adult acoustic files revealed that only 7 of the 20 audio

files contained USV calls. Therefore, the USV calls were available from 7 individual adults (3

males and 4 females).

For analyses, we took all measurable (high quality) USV syllables of pups and adults. The

USV syllables contained from one to a few notes. We defined a note as USV contour either

continuous without breaks or with breaks shorter 10 ms and frequency jumps less than 10

kHz. We defined a syllable as one to a few USV notes separated with frequency jumps over 10

kHz [7,8]. If the separation break between notes exceeded 10 ms, we considered that the notes

belong to different syllables. This syllable separation criterion was adjusted after [10], applied

the 12.75-ms syllable separation criterion for USV syllables in domestic mice.

For pups, we measured in total 782 USV syllables (from 3 to 102 USV syllables per trial, on

average 21.1±22.5 USV syllables per trial). For adults, we measured in total 232 USV syllables

(from 14 to 90 syllables per trial, on average 33.1±26.0 USV per trial). For 5-d pups, we ana-

lysed 17 USV syllables from 4 trials; for 7-d pups 177 USV syllables from 11 trials; for 9-d pups

588 USV syllables from 22 trials.

Acoustic analysis

Measurements of acoustic variables of pup and adult USV syllables have been conducted with

Avisoft SASLab Pro software and exported to Microsoft Excel (Microsoft Corp., Redmond,

WA, USA). As minimum fundamental frequency (f0min) of USV calls always exceeded 10

kHz, before measurements all wav-files were subjected to 10 kHz high-pass filtering, to remove

low-frequency noise.

For each USV syllable, we measured, in the spectrogram window of Avisoft (sampling fre-

quency 384 kHz, Hamming window, FFT 1024 points, frame 50%, overlap 93.75%, providing

frequency resolution 375 Hz and time resolution 0.17 ms), the duration with the standard

marker cursor, and the maximum fundamental frequency (f0max), the minimum fundamental

frequency (f0min), the start fundamental frequency (f0beg) and the end fundamental fre-

quency (f0end) with the reticule cursor (Fig 1 and S1 Table). For each USV syllable, we mea-

sured, in the power spectrum window of Avisoft, the frequency of maximum amplitude

(fpeak) from the syllable’s mean power spectrum and the bandwidth (bndw) of the fpeak at the

distance of 10 dB from the maximum (Fig 1 and S1 Table).

USV syllable types

In the spectrogram window of Avisoft, we classified USV syllables accordingly to the six possi-

ble f0 contour shapes: flat, chevron, downward, upward, short, complex (Fig 2 and S1 Audio).

This classification was based (with modifications) on classifications developed for domestic

mice by [6–8]. The flat contour was denoted when the difference between f0min and f0max

was less than 6 kHz [7]. The short contour was denoted when the duration was shorter 4 ms

[6,7]. In addition, when the difference between f0min and f0max exceeded 6 kHz, the denoted

syllable contours could be the chevron (up-down one time), downward (descending from start

to end), upward (ascending from start to end) or complex (up-down many times).

Ultrasonic vocalization of pup and adult gerbils
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Fig 1. Measured variables for fat-tailed gerbils USV syllables exemplified by a pup 3-note down-up USV syllable with Chevron contour. Spectrogram (right) and

mean power spectrum of the entire call (left). Designations: duration–syllable duration; f0beg–the fundamental frequency at the onset of a call; f0end–the fundamental

frequency at the end of a call; f0max–the maximum fundamental frequency; f0min–the minimum fundamental frequency; fpeak–the frequency of maximum amplitude

within a syllable; bndw–the bandwidth of the fpeak at the distance of 10 dB from the maximum Spectrogram was created using sampling frequency 192 kHz Hamming

window, FFT 1024 points, frame 50% and overlap 93.75%.

https://doi.org/10.1371/journal.pone.0219749.g001

Fig 2. Six contour shapes (A, upper panel) and six note compositions (B, lower panel). Based on their combinations, USV syllables of fat-tailed gerbils were

classified to distinct types (S1 Audio). Spectrogram was created using sampling frequency 192 kHz Hamming window, FFT 1024 points, frame 50%, overlap

87.5%.

https://doi.org/10.1371/journal.pone.0219749.g002
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In addition to classifying by contour shape, we classified the USV syllables accordingly to

the six possible note compositions (1-note, 2-note up, 2-note down, 3-note down-up, 3-note

up-down, multi-note) based on the number of notes within syllable and presence of up or/and

down frequency jumps over 10 kHz (Figs 1 and 2). The 1-note syllables lacked frequency

jumps; the 2-note up syllables had one frequency jump up; the 2-note down syllables had one

frequency jump down; the 3-note down-up syllables had two frequency jumps, first down and

then up; the 3-note up-down syllables had two frequency jumps, first up and then down; and

the multi-note syllables had three or more frequency jumps (Fig 2 and S1 Audio).

Statistical analyses

Statistical analyses were made with STATISTICA, v. 8.0 (StatSoft, Tulsa, OK, USA), all means

are given as mean ± SD. Significance levels were set at 0.05, and two-tailed probability values

are reported. We used a nested design ANOVA with individual nested in age (with age as fixed

factor and individual as random factor) to compare USV variables between pups and adults.

We used one-way ANOVA with Tukey HSD (Honestly Significant Difference) test to estimate

the effect of syllable contour shape and syllable composition on USV variables of pups and

adults. In the case when not all sample sizes fitted to ANOVA assumptions for inclusion in

analysis of groups differing in size not more than ten times, we calculated ANOVA results

both for all groups in total and separately for the groups fitting this ANOVA assumptions.

Results

Types of USV syllables in pups and adults

Of the 36 distinct USV syllable types potentially possible by combining the six syllable contours

and six note compositions, in pups we detected only 18 types and in adults only 24 types; 16

types were shared by pups and adults (Tables 1 and 2). In pups, most frequent was the 1-note

syllable (600 of the total 782 USV syllables) with contours either flat (299 USV syllables) or

chevron (193 USV syllables). Another frequent type in pups was the 3-note down-up syllable

type with the contour chevron (96 USV syllables) (Table 1). In adults, as in pups, most frequent

was the 1-note syllable (178 of the total 232 USV syllables) with the contours chevron (55 USV

syllables), flat (34 USV syllables) or short (32 USV syllables) (Table 2). In addition, two USV

syllables of two individual pups and four USV syllables of two individual adults contained the

nonlinear phenomenon biphonation (interaction between the USV fundamental frequency

and the audible fundamental frequency).

The contours flat and chevron were more frequent in pups than in adults (Fig 3). The con-

tours upward, short and complex were more frequent in adults than in pups. The downward

contour equally frequently occurred in pups and adults (Fig 3).

Percentages of the most frequent 1-note syllables were the same in pups and adults (Fig 4).

The 2-note syllables were more frequent in adults than in pups, whereas the 3-note syllables

were more frequent in pups than in adults and the multi-note syllables were more frequent in

adults than in pups.

Acoustic variables of pup and adult USV syllables

On the total sample of USV syllables of all types, the syllable duration was found longer in

pups than in adults, whereas the fpeak, bandw and all f0 variables were lower in pups than in

adults (Table 3). Similar results for comparisons between pups and adults were obtained on

separately taken samples of all 1-note USV syllables (Table 4) and separately for flat 1-note

USV syllables (Table 5) and chevron 1-note USV syllables (Table 6).
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Unexpectedly, although pup calls were overall longer by duration and lower-frequency

than in adults, the longest USV syllable was found in an adult individual. Similarly, the USV

syllable with the maximal value of f0 was found in a pup individual (Table 3).

In pup 1-note USV syllables, the syllable contour shape affected all acoustic variables

(Table 7). Compared to other syllable contour shapes, the USV syllables with the complex con-

tour had the longest duration and the lowest f0min and f0beg. The USV syllables with the

short contour had the shortest duration and the lowest f0max, fpeak and bndw. The USV sylla-

bles with the upward contour had the highest f0max, f0min, f0end and fpeak. The USV sylla-

bles with the downward contour had the highest f0beg and bndw. The USV syllables with the

chevron contour had the lowest f0end, whereas the USV syllables with the flat contour had

intermediate values of acoustic variables compared to other syllable contour shapes (Table 7).

For USV syllables with three most frequently occurring contour shapes (flat, chevron and

downward), one-way ANOVA results with Tukey HSD test coincided with results of their

comparison in Table 7.

In adults, distinctive to pups, the contour shape affected not all acoustic variables of 1-note

USV syllables, but only the duration, f0beg, f0end and bndw (Table 8). Compared to other syl-

lable contour shapes, the USV syllables with the complex contour had the longest duration

and the highest f0max and fpeak. The USV syllables with the short contour had the shortest

duration. The USV syllables with the upward contour had the highest f0end and the lowest

f0beg. The USV syllables with the downward contour had the highest f0beg and bndw (as in

pups) and the lowest f0min. The USV syllables with the chevron contour had the lowest f0end.

Table 1. Number and percentage of 18 distinct USV syllable types of pups, classified based on combination of contour shape and note composition.

Note

composition

Number pups,

litters

Contour shape Total USV

syllablesflat chevron downward upward short complex

23 pups, 9

litters

22 pups, 9

litters

18 pups, 9

litters

8 pups, 8

litters

6 pups, 4

litters

4 pups, 3

litters

1-note 24 pups, 10 litters 299 193 87 6 9 6 600 (76.73%)

2-note up 7 pups, 7 litters 7 16 7 0 0 0 30 (3.84%)

2-note down 8 pups, 6 litters 11 16 0 3 0 0 30 (3.84%)

3-note down-up 12 pups, 7 litters 0 96 0 0 0 0 96 (12.28%)

3-note up-down 3 pups, 3 litters 1 17 4 0 0 0 22 (2.81%)

multi-note 3 pups, 3 litters 0 2 0 1 0 0 4 (0.51%)

Total USV

syllables

318 (40.66%) 340 (43.48%) 99 (12.66%) 10 (1.28%) 9 (1.15%) 6 (0.77%) 782 (100%)

https://doi.org/10.1371/journal.pone.0219749.t001

Table 2. Number and percentage of 24 distinct USV syllable types of adults, classified based on combination of contour shape and note composition.

Note composition Number adults Contour shape Total USV syllables

flat chevron downward upward short complex

7 adults 7 adults 7 adults 7 adults 5 adults 6 adults

1-note 7 adults 34 55 25 26 32 6 178 (76.72%)

2-note up 6 adults 2 9 2 2 0 1 16 (6.90%)

2-note down 6 adults 6 2 3 3 0 4 18 (7.79%)

3-note down-up 4 adults 0 3 1 0 0 2 6 (2.59%)

3-note up-down 4 adults 1 3 0 0 0 0 4 (1.72%)

multi-note 5 adults 0 6 1 0 0 3 10 (4.31%)

Total USV syllables 43 (18.53%) 78 (33.62%) 32 (13.79%) 31 (13.36%) 32 (13.79%) 16 (6.90%) 232 (100%)

https://doi.org/10.1371/journal.pone.0219749.t002
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The USV syllables with the flat contour had the highest f0min and the lowest f0max, fpeak and

bndw (Table 8).

Number of notes within USV syllable affected all USV acoustic variables for the exclusion

of bndw in pups (Table 9) and for the exclusion of f0beg and fpeak in adults (Table 10). In

both pups and adults, the highest values of duration and f0max were found in the 3-note and

in the multi-note syllables (Tables 9 and 10). In both pups and adults, the shortest duration,

the lowest f0max and the highest f0min were found in the 1-note USV syllables (Tables 9 and

10). The intermediate values of acoustic variables were found in the 2-note USV syllables.

Discussion

General findings

This study revealed a rich repertoire of ultrasonic syllables in fat-tailed gerbils. Based on con-

tour shape and note composition, we identified 24 distinct USV syllable types in adults and 18

in pups; 16 of these 26 types were shared by adults and pups. Percentages of syllables with cer-

tain number of notes were similar between pups and adults. In both pups and adults, 1-note

syllables were most common. The prevalence of 1-note USV calls was also reported in ham-

sters [108,109].

In fat-tailed gerbils, pup USV syllables differed from adult USV syllables by the occurrence

of different contour shapes. Similarly, the developmental changes in the proportions of differ-

ent syllable types were reported for domestic mice [7], Norway rats [35,110] and Scotinomys
singing mice [67]. Age-related differences in the proportion of 22-kHz and 50-kHz calls were

reported in rats [111].

Fig 3. Percentages of pup and adult USV syllables with different contour shapes.

https://doi.org/10.1371/journal.pone.0219749.g003
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Overall, pup USV syllables were of longer duration and lower-frequency than adult USV

syllables. The USV syllable contour shape and note composition significantly affected most

temporal, frequency and power variables in both pups and adults, similarly with findings in

domestic mice [7,112].

In fat-tailed gerbils, the overall USV fundamental frequency range was from 18 kHz to 120

kHz, and the duration of USV calls ranges from 2 ms to 350 ms. This frequency range is

Fig 4. Percentages of pup and adult USV syllables with different note compositions.

https://doi.org/10.1371/journal.pone.0219749.g004

Table 3. Values (mean±SD, min-max) of acoustic variables of pup and adult USV syllables and nested ANOVA

results for their comparison.

Acoustic variable Pups (n = 782 USV syllables) Adults (n = 232 USV syllables) ANOVA

duration (ms) 50.0±31.0

(2.4–154.7)

22.0±32.7

(1.7–354.3)

F1,983 = 81.2, p<0.001

f0max (kHz) 52.2±5.7

(32.6–120.0)

66.8±13.9

(23.6–113.3)

F1,983 = 367.8, p<0.001

f0min (kHz) 41.9±6.7

(19.1–80.6)

51.1±9.6

(18.4–97.9)

F1,983 = 136.2, p<0.001

f0beg (kHz) 47.1±5.7

(19.5–120.0)

57.3±10.2

(21.8–103.2)

F1,983 = 186.8, p<0.001

f0end (kHz) 44.6±5.5

(29.6–80.2)

55.7±13.4

(18.4–113.3)

F1,983 = 319.9, p<0.001

fpeak (kHz) 47.9±6.1

(30.7–87.7)

60.0±10.5

(20.6–108.3)

F1,983 = 262.9, p<0.001

bndw (kHz) 3.1±1.5

(1.5–20.6)

6.5±6.1

(1.8–31.8)

F1,983 = 114.5, p<0.001

https://doi.org/10.1371/journal.pone.0219749.t003
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comparable with those reported in rats, from 20 kHz to over 90 kHz, whereas the duration

range of USV calls in rats is different, from approximately 10 ms to over 3500 ms [113].

No evidence for vocal learning in fat-tailed gerbils

In mammals whose vocal repertoires are assumed to be fixed at birth, the same call types can

be found in pups and adults [114,115]. Our results confirm therefore that ultrasonic vocaliza-

tions of fat-tailed gerbils are innate, as the same 16 USV syllables occurred in both pups and

adults. Similar findings were obtained for other rodents and insectivores. In Scotinomys sing-

ing mice, their ultrasonic long FM down-sweeps that comprise adult advertisement song were

produced from birth [67]. In the piebald shrew Diplomesodon pulchellum, seven of the eight

call types were shared by pups and adults [116,117]. In the Asian house shrew Suncus murinus,
five of seven call types found in pups were also found in adults [118]. In rats, creation of strains

with high or low rates of isolation-induced USV evokes corresponding changes in ontogeny of

acoustic parameters, suggesting that traits of USV calls are genetically predetermined [119]. In

domestic mice, pups produced 10 of 11 USV syllable types recorded from adults [7].

In addition, in domestic mice, embryo-transfer and cross-fostering experiments suggest

that USV calls are innate [47,120,121]. Research suggests that Foxp2 gene plays a crucial role

in vocal development in mammals [122] and in particular in mice [123]. In mice, the chevron

and short contours of USV syllables are coupled respectively with two genotypically different

strains and are inherited by the Mendelian law of independent assortment [124].

We should point however, that in spite of this apparently very strict genetic control of

vocalization, another study reports some level of developmental plasticity of mice vocalization

[8]. This level of plasticity is well comparable to those in mammals with innate vocal reper-

toires vocalizing in the audible range of frequencies [125–127].

Table 4. Values (mean±SD) of acoustic variables of fat-tailed gerbil pup and adult 1-note USV syllables and

nested ANOVA results for their comparison.

Acoustic variable Pups (n = 600 USV syllables) Adults (n = 178 USV syllables) ANOVA

duration (ms) 41.8±27.2 16.6±29.3 F1,747 = 59.9, p<0.001

f0max (kHz) 50.9±5.2 63.8±11.5 F1,747 = 230.0, p<0.001

f0min (kHz) 44.7±4.5 52.3±9.6 F1,747 = 214.1, p<0.001

f0beg (kHz) 47.6±5.5 57.5±9.8 F1,747 = 130.5, p<0.001

f0end (kHz) 45.3±4.8 55.1±11.9 F1,747 = 109.8, p<0.001

fpeak (kHz) 49.2±4.4 60.1±9.3 F1,747 = 241.6, p<0.001

bndw (kHz) 3.0±1.3 6.1±5.6 F1,747 = 79.3, p<0.001

https://doi.org/10.1371/journal.pone.0219749.t004

Table 5. Values (mean±SD) of acoustic variables of fat-tailed gerbil pup and adult flat 1-note USV syllables and

nested ANOVA results for their comparison.

Acoustic variable Pups (n = 299 USV syllables) Adults (n = 34 USV syllables) ANOVA

duration (ms) 30.2±19.5 19.3±13.0 F1,304 = 4.99, p = 0.03

f0max (kHz) 49.0±4.4 59.1±8.1 F1,304 = 117.8, p<0.001

f0min (kHz) 45.8±4.3 54.8±7.6 F1,304 = 112.2, p<0.001

f0beg (kHz) 47.5±4.5 56.4±7.3 F1,304 = 95.1, p<0.001

f0end (kHz) 46.3±4.5 56.0±8.6 F1,304 = 126.4, p<0.001

fpeak (kHz) 48.0±4.3 58.2±7.7 F1,304 = 125.4, p<0.001

bndw (kHz) 2.4±0.6 2.7±0.8 F1,304 = 7.52, p = 0.007

https://doi.org/10.1371/journal.pone.0219749.t005

Ultrasonic vocalization of pup and adult gerbils

PLOS ONE | https://doi.org/10.1371/journal.pone.0219749 July 29, 2019 11 / 25

https://doi.org/10.1371/journal.pone.0219749.t004
https://doi.org/10.1371/journal.pone.0219749.t005
https://doi.org/10.1371/journal.pone.0219749


USV call types in rodent species

The overall richness of USV syllable types, found in fat-tailed gerbils in this study (26 distinct

calls types), was comparable with those reported for bats (28 distinct call types) [128,129]. The

acoustic variation of USV syllable types in pup fat-tailed gerbils (18 USV syllable types) was

comparable with level of variation (10–12 USV syllable types) in pup domestic mice [6–

8,50,130] and in pup Norvay rats [16,35,131]. At the same time, seven USV call types were

identified in pup short-tailed field volesMicrotus agrestis [132]. Six USV call types were identi-

fied in pup Scotinomys [67] and in pup Mongolian gerbils [133,134]. In Peromyscus pups, the

three identified USV call types were shared with adults but did not have clear boundaries

between the types and could grade into one another [102]. Two USV call types were identified

in pup Djungarian humsters Phodopus sungarus [99]. One USV call type was identified in pup

Syrian hamstersMesocricetus auratus, in pup Chinese hamsters Cricetulus griseus [99], in pup

Key Largo woodrats Neotoma floridana smalli [135], but further analyses most probable will

identify more types.

Among adult rodents, 15 distinct USV call types were identified in Norway rats [77,136];

some of these call types were shared between the Norway and 8 other poorly investigated bioa-

coustically Rattus species [137]. Eight USV call types were identified in adult African wood-

land dormice Graphiurus murinus [138]. Five USV call types were identified in adult hazel

dormiceMuscardinus avellanarius [139]; 4 USV call types were identified in adult Peromyscus
[140]. Three USV call types were identified in Mongolian gerbils [141], but these analyses were

limited with sexual behaviour. One USV call type was identified in adult Key Largo woodrats

[135].

Overall, the USV calls of fat-tailed gerbils displayed many similar acoustic traits with USV

calls of domestic mice, Norway rats and other rodents. Therefore, from the applied perspec-

tive, mice USV databases [142] and the automated software for detection, clustering and analy-

ses of mice USV syllables [10,143–145], can potentially be adapted, re-tuned or modified for

calls of fat-tailed gerbils and other laboratory rodent participating in biomedical experiments.

For example, frequency jumps are also characteristic for domestic mice [7,8,146–149], Norway

rats [16,61], short-tailed field voles [132] and collared lemmings Dicrostmyx groenlandicus
[95]. Short notes within 5 ms are also characteristic for domestic mice [6,7] and Norway rats

[14]. The different USV syllable contour shapes of fat-tailed gerbils are also similar with those

reported in mice [6–8,148], Norway rats [14,16] and in short-tailed field voles [132]. Therefore,

for classifying USV calls of fat-tailed gerbils in this study, we mostly followed the categoriza-

tion scheme of USV syllables developed for domestic mice [6–8,148]. Although the categoriza-

tion scheme of bat USV syllables [128,129] was previously applied by for classifying USV

syllables of Mongolian gerbils [78], we did not use it in this study, because the USV syllable

Table 6. Values (mean±SD) of acoustic variables of fat-tailed gerbil pup and adult chevron 1-note USV syllables

and nested ANOVA results for their comparison.

Acoustic variable Pups (n = 193 USV syllables) Adults (n = 55 USV syllables) ANOVA

duration (ms) 64.8±23.5 17.8±14.3 F1,222 = 89.5, p<0.001

f0max (kHz) 52.5±3.3 65.8±11.2 F1,222 = 26.6, p<0.001

f0min (kHz) 43.1±3.2 50.2±8.7 F1,222 = 4.09, p = 0.04

f0beg (kHz) 45.4±3.3 56.8±8.9 F1,222 = 34.7, p<0.001

f0end (kHz) 43.8±3.3 50.6±8.9 F1,222 = 4.32, p = 0.04

fpeak (kHz) 50.3±3.3 61.4±9.1 F1,222 = 22.7, p<0.001

bndw (kHz) 3.5±1.3 7.6±6.5 F1,222 = 9.25, p = 0.003

https://doi.org/10.1371/journal.pone.0219749.t006
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contour shapes reported in bats are rather distinctive from those produced by fat-tailed

gerbils.

Ontogenetic changes in USV acoustic variables

In fat-tailed gerbils, pup USV syllables were in general longer in duration and lower in fre-

quency than adult USV syllables, and each particular call type shared the general ontogenetic

pathway. The general pathway of USV ontogeny in fat-tailed gerbils (increasing fundamental

frequency and call shortening) is opposed to those reported for rats (decreasing fundamental

frequency and call lengthening) and strongly reminiscent of bats. In rat, the initial broad range

of 30–65 kHz of pup so called 40-kHz calls USV frequencies split in adults into two non-over-

lapping frequency ranges, of 22 kHz and 50 kHz calls [1,35,72,150]. In particular, rat pup USV

syllables decrease in fundamental frequency during first 2–3 wk of life [16,41,151]. Then they

suddenly increase in fundamental frequency on 14th [152] or 30th day of pup life [16,113],

depending on rat strain, and split to the adult-like 22-kHz and 50-kHz calls [136]. Then, since

approximately 4 wks up to senescence, the fundamental frequency decreases in both 22-kHz

and 50-kHz calls, irrespectively to the USV syllable contour [153–155]. At the same time, dura-

tion of rat USV calls remains stable until 3 wks, then suddenly decreases [16] and increases

again from 6 wks up to senescence [153–155].

In bats, the ontogenetic changes of USV variables are similar to fat-tailed gerbils in spite of

a distinctive to rodents mechanism for production of bat USV calls, based on vibrations of the

Table 7. Values (mean±SD) of acoustic variables of pup 1-note USV syllables with different contour shapes (flat, chevron, downward, upward, short, complex) and

one-way ANOVA results for their comparison.

Acoustic variable Contour shape ANOVA

flat chevron downward upward short complex

duration (ms) 30.2±19.5 a 64.8±23.5 b 32.5±18.6 a 19.7±14.9 a,c 3.7±0.5 c 97.2±38.1 d F5,594 = 84.4, p<0.001

f0max (kHz) 49.0±4.4 a,d 52.5±3.3 b 53.5±7.7 b,c 58.2±8.1 c 46.6±7.5 a 54.1±3.2 b,c,d F5,594 = 23.0, p<0.001

f0min (kHz) 45.8±4.3 a,c 43.1±3.2 b 44.2±5.7 b 50.7±7.7 c 44.7±7.0 a,b,c 41.2±4.9 a,b F5,594 = 12.2, p<0.001

f0beg (kHz) 47.5±4.5 a 45.4±3.3 b 53.0±7.7 c 50.8±8.0 a,b,c 46.3±7.4 a,b 43.4±6.6 a,b F5,594 = 31.0, p<0.001

f0end (kHz) 46.3±4.5 a 43.8±3.3 b 44.3±5.7 b 57.8±8.6 c 45.0±7.1 a,b 44.0±4.0 a,b F5,594 = 17.6, p<0.001

fpeak (kHz) 48.0±4.3 a 50.3±3.3 b 50.5±4.8 b 55.1±7.3 b 45.8±7.2 a 50.7±3.0 a,b F5,594 = 12.9, p<0.001

bndw (kHz) 2.4±0.6 a 3.5±1.3 b 4.3±1.8 c 2.7±0.6 a,b 2.3±0.6 a 3.6±1.8 a,b,c F5,594 = 50.8, p<0.001

Note: The same superscripts indicate which values did not differ significantly (p>0.05, Tukey HSD test).

https://doi.org/10.1371/journal.pone.0219749.t007

Table 8. Values (mean±SD) of acoustic variables of adult 1-note USV syllables with different contour shapes (flat, chevron, downward, upward, short, complex)

and one-way ANOVA results for their comparison.

Acoustic variable Contour shape ANOVA

flat chevron downward upward short complex

duration (ms) 19.3±13.0 a 17.8±14.3 a 10.7±7.2 a 14.3±15.6 a 3.2±0.6 a 95.1±129.2 b F5,172 = 14.1, p<0.001

f0max (kHz) 59.1±8.1 65.8±11.2 65.4±15.2 64.8±9.6 62.6±13.1 67.8±7.4 F5,172 = 1.9, p = 0.10

f0min (kHz) 54.8±7.6 50.2±8.7 49.5±12.2 54.4±7.4 53.8±11.9 51.2±5.7 F5,172 = 1.9, p = 0.10

f0beg (kHz) 56.4±7.3 a 56.8±8.9 a,b 63.0±13.6 a 54.5±7.4 b 57.8±11.2 a,b 57.2±2.4 a,b F5,172 = 2.4, p = 0.04

f0end (kHz) 56.0±8.6 a,b,c 50.6±8.9 a 50.7±14.6 a,c 64.1±9.6 b,c 57.7±14.9 b,c 56.2±6.2 a,b,c F5,172 = 6.4, p<0.001

fpeak (kHz) 58.2±7.7 61.4±9.1 60.0±11.1 60.2±7.0 59.3±11.9 62.2±6.7 F5,172 = 0.6, p = 0.70

bndw (kHz) 2.7±0.8 a 7.6±6.5 b,c 9.3±7.9 c 4.7±3.0 a,b 5.7±4.4 a,b,c 7.1±3.7 a,b,c F5,172 = 6.1, p<0.001

Note: The same superscripts indicate which values did not differ significantly (p>0.05, Tukey HSD test).

https://doi.org/10.1371/journal.pone.0219749.t008
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thin vocal membranes on their vocal folds [156,157]. Throughout maturation, bats produce

USV calls of the same [158] or an increasingly high fundamental frequency [159–172], in spite

of the growing larynx [173]. USV calls’ shortening from pups to adults has been reported in

the pomona leaf-nosed batHipposideros pomona [166], in Asian particolored bat Vespertilio
sinensis [167], in the big brown bat Eptesicus fuscus [170] and in the long-fingered batMyotis
capaccinii [172].

In mice, USV syllables also shorten as in fat tailed gerbils, but decrease in frequency and

each call type can display a specific pattern of developmental changes [6,98,174–180]. In

domestic mice, as in Norway rats, the developmental analyses are complicated, because the

ontogenetic trends of USV acoustic variables are strain-specific, although generally follow the

species-specific pattern [181]. In ontogeny of Peromyscus rodents, USV syllables shortened,

whereas frequency changes inconsistently [182].

USV and audible calls and hearing sensitivity

Fat-tailed gerbils have the extraordinarily inflated tympanic bullae [85–87]. It can be related

with low-frequency hearing and potential detection of vibrations passing through their sandy

substrate for location insects and approaching predators such as owls or snakes [183,184] Nev-

ertheless, this study showed that pup and adult fat-tailed gerbils produce many various USV

calls. Study of hearing sensitivity suggests that in fat-tailed gerbils, the hearing in the human

audible range of frequencies is shifted to the lower-frequency range compared to other gerbils

Table 9. Values (mean±SD) of acoustic variables of pup USV syllables with different number of notes within syllable (1, 2, 3, multi-note) and one-way ANOVA

results for their comparison.

Acoustic variable Number of notes within USV syllable ANOVA

1-note 2-note 3-note multi-note

duration (ms) 41.8±27.2 a 58.6±26.3 b 86.5±22.9 c 68.0±33.7 a,b,c F3,778 = 96.1, p<0.001

f0max (kHz) 50.9±5.2 a 56.3±7.0 b 56.7±3.1 b 59.4±1.9 b F3,778 = 59.5, p<0.001

f0min (kHz) 44.7±4.5 a 34.9±5.4 b 31.6±2.2 c 33.9±1.9 b,c F3,778 = 367.6, p<0.001

f0beg (kHz) 47.6±5.5 a 44.4±7.9 b 46.1±4.9 b 39.9±8.4 b F3,778 = 9.5, p<0.001

f0end (kHz) 45.3±4.8 a 42.9±9.3 b 42.0±5.3 b 41.0±10.3 a,b F3,778 = 15.4, p<0.001

fpeak (kHz) 49.2±4.4 a 44.7±9.4 b 43.2±8.1 b 43.0±8.5 a,b F3,778 = 46.1, p<0.001

bndw (kHz) 3.0±1.3 3.1±2.6 3.3±1.5 2.9±0.3 F3,778 = 1.1, p = 0.34

Note: The same superscripts indicate which values did not differ significantly (p>0.05, Tukey HSD test).

https://doi.org/10.1371/journal.pone.0219749.t009

Table 10. Values (mean±SD) of acoustic variables of adult USV with different number of notes within syllable (1, 2, 3, multi-note) and one-way ANOVA results for

their comparison.

Acoustic variable Number of notes within USV syllables ANOVA

1-note 2-note 3-note multi-note

duration (ms) 16.6±29.3 a 31.3±31.0 b 45.7±25.0 b,c 64.1±54.6 c F3,228 = 11.1, p<0.001

f0max (kHz) 63.8±11.5 a 75.3±18.1 b 81.5±14.2 b 76.6±11.3 b F3,228 = 14.5, p<0.001

f0min (kHz) 52.3±9.6 a 47.8±8.4 b 48.3±11.8 a,b 43.2±4.7 b F3,228 = 5.0, p = 0.002

f0beg (kHz) 57.5±9.8 55.5±13.0 59.8±8.5 57.7±7.9 F3,228 = 0.6, p = 0.62

f0end (kHz) 55.1±11.9 a,b 61.2±18.3 a 54.4±15.5 a,b 49.1±12.9 b F3,228 = 2.9, p = 0.03

fpeak (kHz) 60.1±9.3 59.4±14.7 61.2±11.8 58.1±12.9 F3,228 = 0.2, p = 0.91

bndw (kHz) 6.1±5.6 a 6.0±5.6 a 11.5±10.6 b 10.2±8.1 a,b F3,228 = 4.0, p = 0.009

Note: The same superscripts indicate which values did not differ significantly (p>0.05, Tukey HSD test).

https://doi.org/10.1371/journal.pone.0219749.t010
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[85]. Data on ultrasonic hearing of fat-tailed gerbils are unavailable. At the same time, studies

on domestic mice showed that neurons in the dorsal cochlear nucleus, designed for respon-

siveness to USV calls below 30 kHz, are also responsive to social USV calls over 50 kHz [185],

probably because of sound distortion when passing cohlea [186]. Fat-tailed gerbils with their

low-frequency sensitivity can serve a potential convenient model for testing this hypothesis of

hearing distorted ultrasound by rodents.

There is a preliminary evidence that during the isolation and handling procedure, pup and

adult fat-tailed gerbils produce also very low-frequency audible calls [39]. Vocalization in both

audible and ultrasonic frequency ranges occurs during experimental isolation and handling

procedures in many species of rodents [26,109]. Further research should investigate the acous-

tic structure and use of the audible calls produced by pup and adult fat-tailed gerbils during

isolation and handling procedure and alternation in their use with the USV calls.

In gerbils, ontogenetic emergence of USV calls is ahead substantially the opening of ears

and eyes. Pup Mongolian gerbils produce USV calls since the 1st day of pup life, with maxi-

mum of ultrasound emission in 2-6-day pups [33,96,174]. In pup fat-tailed gerbils, first USV

calls emerge since 5th day of pup life, with maximum of ultrasound emission in 11-14-day

pups [39]. At the same time, in gerbils, the ear opening occurs between 12 and 28 postnatal

day depending on the species and the eye opening occurs between 14 and 24 postnatal day

depending on the species, see review in [review in 84]. In pup fat-tailed gerbils, the ears open

very late, at postnatal day 27, whereas the eyes open between 16 and 24 postnatal days [80,84].

As in rats and mice, pup isolation USV calls are directed to their mothers at situations when

pup USV calls promote retrieval by the pups by their mothers [36].

This study provides an additional evidence about the wide acoustic variation of USV calls

in pup and adult gerbils. These variable calls may potentially play an important role in different

social contexts. Further studies are necessary to reveal the relationships between the acoustics

structure and the attending behaviours in the fat-tailed gerbil.
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